Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования «Северо-Восточный федеральный университет им. М.К. Аммосова» Институт математики и информатики

ПРОГРАММА

вступительного собеседования в магистратуру по направлению подготовки МАТЕМАТИКА

Направленность «Дифференциальные уравнения, оптимальное управление и аналитика»

Степень (квалификация) - магистр

Общие сведения

Цель: Целью собеседования в магистратуру является выявление уровня подготовки претендента к освоению программы специализированной подготовки магистра математики по направлению подготовки 01.04.01 «Математика» на конкурсной основе. В ходе собеседования оцениваются обобщенные знания и умения по теоретико-практическим основам математического образования по профилю «Дифференциальные уравнения, оптимальное управление и аналитика».

Задачи:

- проверить уровень знаний претендента;
- определить склонности к научно-исследовательской деятельности;
- выяснить мотивы поступления в магистратуру;
- определить область научных интересов;
- определить уровень знаний по профилю.

Требования к уровню подготовки претендента:

Поступающий в магистратуру по направлению подготовки 01.04.01 «Математика» должен показать:

- 1) четкое знание математических определений и теории, предусмотренных программой по данному направлению;
- 2) умение точно и сжато выражать математическую мысль в устном и письменном изложении, использовать соответствующую символику;
- 3) уверенное владение математическими знаниями и навыками предусмотренными программой, умение применять их при решении задач.

Форма проведения и структура билета:

На собеседовании претендент на каждый вопрос должен привести необходимые для полного раскрытия вопроса определения и понятия, вспомогательные утверждения, основные теоремы с доказательством и примеры.

Для подготовки к ответу на вопросы отводится один академический час (45 минут). По результатам собеседования выставляется оценка по 100-балльной шкале.

Распределение баллов, в зависимости от полноты приведенного абитуриентом ответа на вопросы билета

Баллы	Критерии оценки
80-100	Ставится претенденту, проявившему всесторонние и глубокие знания
	программного материала, обнаружившему способности в понимании,
	изложении и практическом использовании материала. Свои ответы
	претендент иллюстрирует конкретными примерами, проявляя при этом
	умение использовать основную математическую литературу. При этом
	проявляет оценочные суждения, умение проводить подробное

	доказательство различных математических утверждений (теорем, лемм и т.д.), полно и обоснованно формулировать определения основных понятий. Приводя соответствующие примеры, абитуриент демонстрирует необходимые практические умения.
	Незначительные упущения в приводимом ответе, не сильно влияющие
	на правильность рассуждения
менее 80	Ставится претенденту, проявившему знание основного программного материала, продемонстрировавшему стабильный характер знаний и умений, способному к их самостоятельному применению в ходе практической деятельности, но затруднившемуся в раскрытии сущности основных математических определений или испытывающему незначительные трудности при проведении доказательства
	математических утверждений или при изложении допустившем небольшие пробелы, не исказившие математическое содержание ответа.

Порог успешности прохождения вступительного собеседования составляет 80 баллов.

Вопросы к собеседованию

Дисциплина: Математический анализ

Предел числовой последовательности. Основные свойства пределов. Теорема Больцано - Вейерштрасса о выделении сходящейся подпоследовательности. Критерий Коши существования предела. Предел функции в точке. Замечательные пределы.

Непрерывность функции в точке и на множестве. Точки разрыва. Ограниченность функции, непрерывной на отрезке. Равномерная непрерывность функции, непрерывной на отрезке.

Производная в точке, непрерывность дифференцируемой функции.

Теоремы Ферма, Ролля, Лагранжа и Коши. Локальная формула Тейлора.

Определенный интеграл Римана. Теорема о среднем значении. Интеграл с переменным верхним пределом. Формула Ньютона-Лейбница.

Евклидово пространство m измерений. Дифференциал и частные производные функции нескольких переменных.

Неявные функции.

Сходимость и сумма числового ряда. Критерий Коши. Знакопостоянные ряды. Признаки сходимости. Абсолютная и условная сходимости. Признак Лейбница.

Радиус и интервал сходимости степенного ряда; формула Коши-Адамара.

Кратные интегралы Римана и их свойства. Приведение двойного интеграла к повторному. Приведение тройного интеграла к повторному. Замена переменных в двойном интеграле. Замена переменных в тройном интеграле. Геометрические и механические приложения двойных и тройных интегралов.

Простая гладкая (кусочно-гладкая) кривая. Длина дуги кривой. Криволинейные интегралы первого и второго родов и их вычисление. Формула Грина. Выражение площади плоской области с помощью криволинейного интеграла.

Тригонометрическая система и ее ортогональность. Тригонометрический ряд Фурье. Поточечная сходимость тригонометрического ряда Фурье кусочно-гладкой на $[-\pi; \pi]$ функции. Достаточное условие разложимости функции в тригонометрический ряд Фурье.

Дисциплина: Функциональный анализ

Метрика, сходимость, полнота, сепарабельность. Примеры метрических пространств. Теорема о вложенных шарах. Принцип сжатых отображений и его применения. Компактные множества. Необходимое и достаточное условия компактности в метрических пространствах. Свойства функций, заданных на компакте.

Общие понятия о аддитивной меры. Измеримые функции и их структура. Интеграл Лебега. Связь интеграла Лебега с интегралом Римана. Неоп- ределенный интеграл Лебега. Восстановление функции по ее производной.

Линейные нормированные пространства. Примеры. Изоморфность конечномерных линейных нормированных пространств E_n п-мерному пространству R^n . Нормируемость линейного топологического пространства.

Линейные ограниченные операторы в банаховых пространствах.

Ограниченность, норма, непрерывность линейного оператора. Обратный оператор и его свойства. Компактные операторы и уравнения с компактными операторами.

Скалярное произведение, неравенство Коши-Буняковского, характеризация гильбертова пространства, Теорема Рисса-Фишера. Изоморфизм сепарабельных пространств. Общий вид линейного функционала в гильбертовом пространстве.

Компактность интегральных операторов, теорема Фредгольма для уравнений с вырожденными ядрами. Уравнения Фредгольма с симметричными ядрами и теорема Гильберта-Шмидта.

Дисциплина: Дифференциальные уравнения

Дифференциальные уравнения первого порядка. Частное решение. Общее решение, особое решение. Нахождение общего решения линейного дифференциального уравнения первого порядка.

Линейные дифференциальные уравнения n —го порядка. Фундаментальная система решений, общее решение линейного однородного уравнения. Структура общего решения линейного неоднородного уравнения. Метод Лагранжа для нахождения частного решения линейного неоднородного уравнения.

Линейные неоднородные уравнения n — го порядка с постоянными коэффициентами. Характеристическое уравнение, нахождение фундаментальной системы решений в зависимости от корней характеристического уравнения.

Линейные системы уравнений с постоянными коэффициентами. Характеристическое уравнение, фундаментальная система решений. Общее решение. Метод Лагранжа для нахождения частного решения линейной неоднородной системы уравнений.

Устойчивость решений. Теорема Ляпунова об асимптотической устойчивости по первому приближению.

Дисциплина: Уравнения с частными производными

Приведение к каноническому виду и классификация линейных уравнений с частными производными второго порядка, характеристики. Вывод уравнений колебаний струны, теплопроводности, Лапласа. Постановка основных краевых задач, их физическая интерпретация.

Задача Коши для уравнения колебаний струны, формула Даламбера. Теоремы единственности и устойчивости решения задачи Коши. Метод Фурье для уравнения колебаний струны.

Принцип максимума в ограниченной области и единственность решения задачи Коши для уравнения теплопроводности. Построение решения задачи Коши для уравнения теплопроводности: формула Пуассона.

Уравнения Лапласа и Пуассона, фундаментальное решение уравнение Лапласа. Принцип максимума для гармонических функций. Функция Грина задачи Дирихле, решение задачи Дирихле для уравнения Лапласа в шаре.

Дисциплина: Вариационное исчисление и методы оптимизации

Задача линейного программирования. Геометрическая интерпретация. Симплекс метод. Двойственные задачи. Теоремы двойственности.

Основная простейшая задача вариационного исчисления. Уравнение Эйлера. Частные случаи интегрируемости.

Различные обобщения уравнения Эйлера. Уравнение Пуассона-Эйлера и Остроградского.

Достаточные условия слабого и сильного экстремума. Условия Якоби, Лежандра и Вейерштрасса.

Задача о брахистохроне. Вариационные принципы механики.

Задача оптимального управления. Принцип максимума. Пример Понтрягина.

ЛИТЕРАТУРА

- 1. Архипов Г.И., Садовничий В.А., Чубариков В.Н. Лекции по математическому анализу. 5-е изд., испр. М.: 2004. 640 с.
- 2. Кудрявцев Л.Д. Курс математического анализа. Т. 1. М.: Дрофа, 2003. 704 с.
- 3. Кудрявцев Л.Д. Курс математического анализа. Т. 2. М.: Дрофа, 2003. 469 с.

- 4. Демидович Б.П. Сборник задач и упражнений по математическому анализу. 13-е изд., испр. М.: Изд-во Моск. ун-та ЧеРо, 1997. 624 с.
- 5. Виноградова И.А., Олехник С.Н., Садовничий В.А. Задачи и упражнения по математическому анализу. Книга 1 и 2. М.: Изд-во Моск. ун-та, 1988. 416 с.
- 6. Люстерник Л. А., Соболев В.И. Краткий курс функционального анализа. М.: Высш. школа, 1982. 271 с.
- 7. Натансон И.П. Теория функций вещественной переменной. М.: Наука. Гл. ред. физ.-мат. лит., 1974. 480 с.
- 8. Колмогоров А.Н., Фомин С.В. Элементы теории функций и функционального анализа. 7-е изд. М.: Физматлит, 2004. 572 с.
- 9. Понтрягин Л.С. Обыкновенные дифференциальные уравнения. М: Изд-во: Наука, 1974. 331 с.
- 10. Матвеев Н.М. Методы интегрирования обыкновенных дифференциальных уравнений. М.: Высшая школа, 1967. 565 с.
- 11. Тихонов А.Н., Васильева А.Б., Свешников А.Г. Дифференциальные уравнения. 4-е изд. М.: Физматлит, 2005. 256 с.
- 12. Самойленко А.М., Кривошея С.А., Перестюк Н.А. Дифференциальные уравнения. Примеры и задачи. 2-е изд., перераб. М.: Высш. шк., 1989. 383 с.
- 13. Михайлов В.П. Дифференциальные уравнения в частных производных второго порядка. М.: Наука, 1976. 391 с.
- 14. Ладыженская О.А. Краевые задачи математической физики. М.: Наука, 1973
- 15. Тихонов А.Н., Самарский А.А. Уравнения математической физики. 7-е изд. М: Наука, 2004. 798 с.
- 16. Соболев С.Л. Уравнения математической физики. М.: Наука, 1966, 444 с.
- 17. Бицадзе А.В. Уравнения математической физики. М., Наука, 1982, 336 с.
- 18. Алексеев В.М., Тихомиров В.М., Фомин С.В. Оптимальное управление. Изд. 3-е, перераб. и доп. М.: Физматлит, 2007.
- 19. Болтянский В.Г. Математические методы оптимального управления. М.: Наука, 1979. 468 с.
- 20. Васильева А.Б., Медведов Г.Н., Тихонов Н.А., Уразгильдина Т.А. Дифференциальные и интегральные уравнения. Вариационное исчисление в примерах и задачах. 3-е изд-ие, 2010, 432 с.
- 21. Васильев В.В. Тринадцать лекций по основам вариационного исчисления. Учебное пособие, Иркутск : ИГУ, 1989.
- 22. Гельфанд И.М., Фомин С.В. Вариационное исчисление. М.: Физматлит, 1961. 228 с.
- 23. Моисеев Н.Н., Иванилов Ю.П., Столярова Е.М. Методы оптимизации. М.: Наука, 1978. 352 с.
- 24. Эльсгольц Л.Э. Дифференциальные уравнения и вариационное исчисление. М.: Наука, 1969. 424 с.
- 25. Алексеев Н.К. Задачи линейного программирования: учебно-методическое пособие. Якутск: Изд-во Якутского ун-та.
- 26. Егоров И.Г. Задачи на максимум и минимум: учебное пособие. Якутск: Изд-во Якутского ун-та, 2005. 373 с.